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Abstract. A P(k,d) hyper-pyramid is a level structure of k Boolean cubes where the cube 
at level t is of dimension id, and a node at level z — 1 connects to every node in a d dimensional 
Boolean subcube at level «', except for the leaf level k. Hyper-pyramids contain pyramids as 
proper subgraphs. We show that a P(k,d) hyper-pyramid can be embedded in a Boolean cube 

with minimal expansion and dilation 2.  The congestion is bounded from above by ^^ and 

from below by 1 + f^^fl- For P(k,2) hyper-pyramids we present a dilation 2 and congestion 
2 embedding. In addition to expansion, dilation, and congestion we also characterize the em- 
bedding with the active-degree, and the node-load. The former property gives the maximum 
number of cube edges being used at any node, and the latter property measures the maximum 
number of messages a cube node needs to handle. The active degree for the embeddings is equal 
to the number of cube edges per node, i.e., kd + 1, and the node-load is bounded from above 
by 0(2d) + O(kd) with a congestion of 0(^-). For the P(k,2) hyper-pyramid embedding we 
present, the node-load is 2k + 5. 

We also present embeddings of a P(k,d) hyper-pyramid together with 2rf — 2 P(k,d) hyper- 
pyramids such that only one cube node is unused. The dilation of the embedding is d + 1 with 
a congestion of 0{2d). An alternate embedding with dilation 2d and congestion 0(^-) is also 
presented. The active-degree is kd + 1 for both embeddings. The node-load is 0(d2d) + 0(kd) 
for the former and 0(2d) + O(kd) for the latter embedding. Specialized to hyper-pyramids 
P{k, 2) we present two embeddings: one with dilation 3, congestion 3 and a node-load of 3k + 5; 
the other with dilation 4, congestion 5 and a node-load of 2k + 9. As a corollary a complete 
n-ary tree can be embedded in a Boolean cube with dilation max(2, riog2 n]) and expansion 

1     Introduction 

Processor utilization and communication time are two important considerations in selecting 
data structures and algorithms for architectures assembled out of a large number of parts. 
Communication is one of the most expensive resources in such an architecture, and its efficient 
utilization is imperative. In studying the efficient utilization of the communication system the 
communication needs of the computations are modeled by a graph, which is usually referred to 
as the guest graph [29]. This graph discloses the interaction between the data elements of the 
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computation. Similarly, the topology of the ensemble architecture is captured by a graph, the 
host graph. Each vertex represents a processor with local storage and each edge a communication 
link between processors. The guest graph is embedded in the host graph for the execution. 

The embedding function / maps each vertex in the guest graph G into a unique vertex in 
the host graph H. Let V(G) and £(G) denote the node sets and the edge sets of a graph G. 

\S\ denotes the cardinality of a set S. The expansion of the mapping is jvjgjl- Each edge 
«G = (i,j) € £(G) is mapped into a path in H, pathH(ec). The dilation of the mapping is 
the maximum length of pathH(ec) for all *G € £(G). The expansion is a measure of processor 
utilization. The slow down of nearest-neighbor communication in the original graph by edges 
being "stretched" into paths of length greater than one is a function of the dilation and conges- 
tion, the maximum number of guest graph edges sharing an edge in the host graph. From an 
architectural point of view it is also of interest to know how many edges of a node in the host 
graph are being used by the embedding, and the total number of messages being serviced by a 
node when every node sends a message to the neighboring nodes as defined by the guest graph. 
The first quantity is measured by the active-degree and the latter by the node-load. Related to 
the embedding of pyramids is the embedding of meshes and trees. Embedding of meshes into 
hypercubes has been studied in [20,17,7,15,12,6]. Embedding of trees into hypercubes has been 
studied in [13,22,18,17,35,3,2,10,19,16,34,26]. 

Several parallel algorithms that naturally lend themselves to a pyramid topology are dis- 
cussed, for instance, in [32,27,9,5,33]. Multigrid algorithms for partial differential equations [8] 
and algorithms for image processing [5] are specific examples. The embedding of pyramids into 
hypercubes was first studied by Stout [31]. He proved that there exists a constant dilation 
embedding of an M node pyramid in an N node Boolean cube with TV' < M, if « 4f pyra- 
mid nodes are mapped to every cube node. Stout also showed that for a one-to-one mapping 
minimal expansion and dilation 2 is possible. Lai and White [23] give embedding algorithms 
with dilation 2 and congestion 3, or dilation 3 and congestion 2 (both with minimal expansion). 
We give an embedding with dilation 2, congestion 2 and minimal expansion. Independently, 
Leighton et al. [25] have obtained a similar result. We also generalize previous embeddings to 
minimal expansion and dilation d embeddings of hyper-pyramids, graphs where each non-leaf 
node has 2d children and the nodes at the same level form a hypercube (instead of a mesh). 

Lai and White [24] also gave an algorithm for embedding a pyramid and two smaller pyra- 
mids (of approximately quarter size each) into a hypercube with expansion a 1 dilation 3 and 
congestion 6. We improve the result to expansion a 1, dilation 3, and congestion 3. The result is 
generalized to the embedding of one hyper-pyramid with minimal expansion, and the embedding 
of 2d - 2 smaller hyper-pyramids in the same Boolean cube with a total expansion a 1, and a 
dilation of d+1. We also consider active-degree and node-load for all the embeddings presented, 
which are summarized in Table 3 in Section 4. 

In the next section we introduce the notation used in the paper, define pyramids and hyper- 
pyramids, and give some of their properties. Section 3 contains the main results', which are 
summarized in Section 4. 



2    Preliminaries 

Let Hamming(x, y) be the Hamming distance between x and y and ||i|| be the number of 1-bits 
in the binary representation of i, i.e., ||i|| = Hamming(x,0). Also, let 0m be a string of m 
0-bits, and lm a string of m 1-bits. Let jm be the mth bit of the binary representation of j 
with the least significant bit being the Oth bit. Let AG(i) be the set of nodes adjacent to node 
i: AG(i) = {j\(ij) € £(<?)}. Let z<m> = x 0 2m. 

Definition 1 An embedding / of a guest graph, G, into a host graph, H, is a one-to-one 
mapping from V(G) to V{H). The expansion of the embedding / is 

|V(U)I expj = 
|V(G)|' 

In order to consider dilation and congestion, we specify the path from /(f) to f(j) in H 
for every edge eG = (i,j) G £(G). Let pathH(eG) = Po,Pi, ■ --,P*, where pm G V(J7), for all 
0 < m < k, po = f(i) and p* = /(j). Moreover, let £(pathH(eG)) = {(pm,Pm+i)|0 <m <k). 
i.e., the set of edges along the path. 

Definition 2 The dilation of an edge eG G £(G) is the length of the path pathn(eG): 

dilf(eG) = \£(pathH(eG))\. 

The dilation of the embedding / is 

rfiV/ =    max    dilf(eG). 
VeG6f(G)       yV      ' 

We will sometimes also consider dilation of a set of edges 5 as 

dilt(S)= max dilr(eG). J VeGe5       JV      ' 

Definition 3 The congestion of an edge e// G £(H), congs(e}i), is the number of edges in G 
with images including en, 

congf(eH)=     £     |{e„} n £-(pat/i//(eG))|. 
VeG6£(G) 

The congestion of the mapping / is 

con9j = ^m^cong^). 

Congestion is sometimes referred to as load-factor [2]. 

Definition 4 The active-degree of a node i, a,, is the number of edges of host graph node i 
being part of any pathn- 

«i =     £     K('\ J)} n (u£(pathH(ec)),VeG G f (G))|. 



The active-degree of the mapping / is 

active-degreef =   max   a,. 
/        VigV(tf) 

The active-degree is a measure of the number of ports that need to be serviced concurrently 
in case the communication is pipelined. The node-load measures the total load on any node, 
which is of particular importance in case a node can service only one port at a time. The number 
of messages a node has to service is the sum of the degree of the pyramid node mapped to it 
and twice the number of paths going through it (one send, one receive operation). 

Definition 5 The node-load of node i, /?,-, is the number of messages that node i needs to 
service 

0i=     J2     C0n9/((hj))- 

The node-load of the mapping / is 

node-loadf =   max 3.. 
■ €V(#) 

Definition 6 A lj x ^ mesh M(li,l2) is a graph with vertex set 

V(U(lul2)) = {(x,,*2)|0 < xi <li,0<x2< h} 

and edge set 

£(M(li,l2)) = {{v,v')\v = (n,u)y = (x[,x'2) € V(M(lul2)),\Xl - x\\ + \x2 - x'2\ = 1}. 

Definition 7 A fc-level pyramid P(kJul2) is a graph with vertex set 

k 

V(P(k,lul2)) = U{(».*i.*2)|(*i,i2) 6 V(M(l\,l2))} 
i=0 

and edge set 

k 

£(P(k,lul2))    =    U{((,'^i'I2),(«',x'1,i'2))|((i1,z2),(x'1,^)) e S(M(l\.l2))}\J 
1=0 

k 

\J{((i,xux2),(i-l, 
1=1 ll 

51 ))!(xi,x2)€ V(M(l[,l2))}. 

Intuitively, a P(k,lul2) pyramid is made up of the graphs M(/?,/°) through Af(/f,/£), with 
each node having lx x l2 children, except nodes at level k. Node (i,xx,x2) € V(P(kJlJ2)) is at 
level i. The node at level 0, (0,0,0), is called the apex, or the root of the pyramid! The nodes 
at level k are leaf nodes and the mesh at level k, A/(/f,Z£), is the base of the pyramid. Clearly, 
P(k,lul2) is the same as P(k,l2Ji). Figure 1 shows the topology of a P(2,2,2) pyramid. It 
can be viewed as a complete quad-tree with nodes at the same level being connected as a mesh. 



Level 

apex 0 (0,0,0) 

base 2 

Figure 1: The topology of a P(2,2,2). 



000 

Figure 2: The HA with corresponding node addresses used in this paper. 

The number of vertices in a pyramid is 

\v(P(k,iui2))\ = £(W = {lll
1
2]k+1 ~ l 

,=0 '1*2 — 1 

and the number of edges is 

|,f(P(fc,/1,z2))l = ^3(;1/2)'-/'-/i. 
«=i 

Denote a fc-dimensional Boolean cube by Hk. Figure 2 shows an H4. The addresses of cube 
nodes in subsequent figures are omitted, but determined in the same way. For clarity we omit 
edges in certain high dimensions in subsequent figures. 

Definition 8 A k-level hyper-pyramid P{k,d) of degree d is defined recursively as follows. 
P(0,d) is a root node.   A P(k,d) hyper-pyramid is constructed out of 2d P(k - l,d) hyper- 
pyramids by interconnecting corresponding nodes in each of these hyper-pyramids as d-dimensional 
Boolean cubes, and connecting a new node to every root of the P(k - l,d) hyper-pyramids. 

Lemma 1  A P(k,d) hyper-pyramid contains a P(Ar,2,,2<f-') pyramid, 0 < :' < d, as a subgraph. 

As a corollary, a P{k,2) hyper-pyramid contains a P{k,2,2) pyramid as a subgraph. In the 
following we will only consider the embedding of hyper-pyramids into Boolean cubes. 

We will use definition 8 in specifying embedding functions, /, and prove their properties 
with respect to dilation, congestion, active-degree, and node-load. Hyper-pyramids can also be 
defined recursively by adding an Hkd cube to a P(k - l,d) hyper-pyramid. The hyper-pyramid 
P{k,d) is obtained by connecting each node in the Hkd to a (parent) node in the base of the 
P(k - l,d) hyper-pyramid. Such a definition emphasizes the fact that hyper-pyramids can be 
viewed as a sequence of cubes of linearly increasing dimensions with a tree structure connecting 
them. 



Level 

0 (0*0 

Figure 3: The topology of a P(2,2) hyper-pyramid. 

The vertices of a hyper-pyramid P(k, d) are given addresses (i,j) such that i encodes the level, 
0 < «' < k, and j identifies one of the 2id nodes at that level. (Note that id means i*d.) Here, j is 
a binary number of length id. Node a(i,j) connects to a parent node a(i - 1, (jid-ijid-2 • • -jd)), 
if i ± 0, and to 2d children nodes with addresses {(» + 1, j|| *,_, *d_2. ..«„)}, if i ^ it, where' 
*m - 0 or 1 for all 0 < m < d and "||" is a concatenation operator. The second argument of the 
parent address is obtained by removing the lowest-order d bits from j. The second argument 
of the child addresses are obtained by appending d-bit binary string to j. These edges form 
the "tree-edges" of the hyper-pyramid. In addition there are id "cube-edges" connecting node 
a(i,j) to nodes a(j',j^m>) for all 0 < m < id. 

Figure 3 shows the topology of a P(2,2) hyper-pyramid. Note that id bits are used for the 
second argument of the node addresses at level i. The second argument of a root node is a null 
string, which is represented by e. Figure 4 gives another view of the same hyper-pyramid. 



Level 
0 (0,0 

Uli) 

Figure 4: Another view of the topology of a P(2,2) hyper-pyramid. 

The number of nodes in a hyper-pyramid P{k,d) is 

\V(P(k,d))\ = £?<< = 
i=0 

2(*+i)<*_ i 

2d - 1 

and the number of edges is 

\£(P(k,d))\ = f2id?d-1 + f^2'd. 

In the formula for the number of edges the first term accounts for the edges at each level and 
the second term accounts for the edges between levels. From Figures 1 and 3 it is clear that a 
P(2,2,2) pyramid with end-around edges added to the mesh at level 2 is topologically equivalent 
to a P(2,2) hyper-pyramid. This is because a 4 x 4 torus is topologically equivalent to an H4 

Boolean cube (and, in general, a d-dimensional torus with width 4 is topologically equivalent to 
an H2d cube). 

Lemma 2 A lower bound for the dilation of any embedding of a P(k.d) hyper-pyramid into a 
smallest Boolean cube Hn (i.e., |V(i5TB.,)| < |V(P(M))| < \V{Hn)\) is \. 

Proof: The diameter of a P(k.d) hyper-pyramid is 2k. The smallest cube Hn which is large 
enough to hold a P(k, d) hyper-pyramid has n = kd + 1 dimensions. Since the hyper-pyramid 
contains more than 2n_1 nodes, there exist two hyper-pyramid nodes that are mapped to cube 
nodes at a distance of at least n - 1 in the Hn cube. Consider any shortest path between these 
two hyper-pyramid nodes. Let the length of the path be I. Clearly, I < 2k. Each edge on the 
path will be stretched in the embedding such that all I edges together are stretched into the 



path of length > n - 1 in the Hn cube. So, at least one of this £ edges is stretched into a path 
of length 

n - 1      n - 1 _ d - 
~     I     ~    2k        2' 

Similarly, a lower bound of the dilation for embedding a P(k, lu l2) pyramid into a I1+il     / / 

cube is og;
2 ' 

;. The following four lemmas will be used later for proofs of congestion and node- 
load. 

Lemma 3 A 2n node flat tree (i.e., a root with 2" - 1 children) can be embedded in an Hn cube 
with congestion < ^|W. 

Proof: Embed the flat tree into the Spanning Balanced n-Tree of an n-cube [19,16]. Then each 
subtree of the root has at most ^. nodes, and the congestion is dominated by the out-going 
edges of the root, which in turn is equal to the number of nodes in the subtree. I 

An asymptotically better upper bound on the number of nodes in a subtree of the Spanning 
Balanced n-Tree can be derived from [16] as (1 + 1)22=1 _|_ j 

Lemma 4+X 2" - 1 node flat tree can be embedded in an Hn cube such that the congestion is 
at most -^Y and the node-load of the unused cube node is zero (i.e., no path passes through the 
unused cube node). 

Proof: Let j be one of the dimensions in which the corresponding bits of the root and the unused 
node addresses differ. Partition the Hn cube into two subcubes with respect to dimension j. 
Call the subcube which contains the root of the flat tree subcube 0, and the other subcube 1. 
Define a balanced tree in subcube 0. Then, extend the tree by connecting each node in subcube 
0 to its corresponding node in subcube 1 except that the unused node is not included. The 
congestion of the embedding is dominated by the out-going edges of the root, i.e., twice the 
number of nodes in the maximum subtree of the balanced tree in subcube 0.  This number is 
- * x n+1   -   n+1 • " 

Definition 9 A translation of a node x with respect to a node s is a bit-wise exclusive-or 
of the two node addresses x and s, i.e., Tr(x,s) = x ® s. A translation of a graph G(V,£) 
with respect to a node s is a translation of all the vertices of the graph G with respect to the 
node s, i.e., Tr(G(V,£),s) = G(Tr(V,s),Tr(£,s)) where Tr(V,s) = {rr(x,S)|Vx € V} and 
Tr(£,s)={(Tr(x,s),Tr(y,s))\V(x,y)e£}. 

Lemma 5 A 2" node complete graph, with all edges duplicated, can be embedded into an Hn 

Boolean cube with congestion  < n2"V + n. 



Proof: By duplicating all edges in the complete graph, one can decompose the edges of the 
complete graph into sets E0,EU.. .,E2*-i such that the graph G, = (V.-E.) forms a 2n node 
flat tree rooted at node t, where V is the node set of the complete graph. Embed the flat tree 
G, into the Spanning Balanced n-Tree (SBnT) [19] rooted at node t in an Hn cube. In order 
to consider the congestion, we modify the SBnT such that every edge which connects a node to 
its child node x is replaced by gx edges where gx is the number of nodes in the subtree rooted 
at node x (including the node x). The congestion for the embedding of these 2n flat trees in 
an Hn cube is equal to the maximum number of edges of the 2n modified SBnT's that share a 
cube edge. Since the SBnT's are distinct translations of each other (with respect to its own root 
address), cube edges of the same dimension are evenly used. The edge congestions of all cube 
edges in the same dimension, say dimension y, are the same, which is equal to twice the number 
of tree edges in dimension y of a modified SBnT. Furthermore, from the property that subtrees 
of the SBnT can be obtained through address rotation of each other [14], the number of tree 
edges in a given dimension of a modified SBnT can be shown to be bounded from above by the 
number of tree edges in the largest subtree of a modified SBnT. Also, from a correspondence 
property between nodes at level t and level n -1 within subtrees [14], the number of tree edges 
in the largest subtree of a modified SBnT is: (the number of nodes in the largest subtree of the 
SBnT plus one) times \. The congestion is bounded from above by 

_, 2n+1 n      n2n+l 

2(;m+1)2 = ^TT + n-   ■ 

Lemma 6 A 2n - 1 node complete graph can be embedded into an Hn cube such that the con- 
gestion is 0(2") and the node-load of the unused cube node is zero (i.e., no path passes through 
the unused cube node). 

The proof follows that of Lemma 5, but each SBnT is modified to exclude the unused node 
as described in the proof of Lemma 4. Clearly, the order of the congestion is the same as that 
in Lemma 5. 

3    Embedding hyp er-pyramids into hypercubes 

The main results of this paper are: 

1. A P(k,d) hyper-pyramid, d > 2, can be embedded into an Bkd+l Boolean cube with 
expansion < 2 and dilation d. The congestion is bounded from below by 1 + rj£=f| and 

from above by \%£\. The active-degree of the mapping is kd + 1 and the node-load is 
bounded from above by (1 + ■j^)2d + (it - l)d. 

2. A P(k,2) hyper-pyramid can be embedded into an H2k+1 Boolean cube with expansion < 
2, dilation 2, and congestion 2. The active-degree of the embedding is 2k + 1. and the 
node-load is 2k + 5. 

10 



3. A P{k,d) hyper-pyramid together with {2d - 2) P(k - l,d) hyper-pyramids, d > 2. can 
be embedded into an Hkd+\ Boolean cube with expansion « 1 (only one cube node is 
not used) and dilation d + 1. The congestion is at most 0(2d) and the node-load is at 
most 0(d2d) + 0{kd). However, with a dilation of 2d, the congestion is reduced to at 

most r£i + 2gL + i and the node-load to at most (3 + £-)2d + (k - 3)d, k > 3. Both 
embeddings have active-degree kd + 1. 

4. A P(k,2) hyper-pyramid and two P(k - 1,2) hyper-pyramids can be embedded into an 
H7k+i Boolean cube with expansion a 1, dilation 3, and congestion 3. The active-degree 
is 2d + 1 and the node-load is 3k + 5. Alternatively, with dilation 4 and congestion 5, the 
node-load can be 2k + 9. 

The bounds are summarized in Table 3 in Section 4. (2) is a special case of (1), and (4) is a 

special case of (3). The expansion of (1) is ffi_J~.V, which is bounded from above by fa^ and 

from below by |^Er for Jb > 1. For d = 2, it is between § and §. 

Definition 10 A two-rooted hyper-pyramid P(k,d) is a P(k,d) hyper-pyramid with an addi- 
tional root node and additional edges between it and all nodes at level 1. The two roots are 
denoted a(O.s) and a(0',e), respectively. 

Since the two roots are symmetrical, either one can serve as the root. One of the roots will 
be a node at level one after the induction step. This root is the real root. The other of the two 
roots will either serve as one of the two new roots, or become unused. This root is the spare 
root. There is no edge between the two roots according to the definition, but the embedding 
functions presented below always map the two roots to adjacent cube nodes. The idea of using 
two roots for the recursive construction of tree structures has been used before, for instance, by 
Bhatt and Leiserson [4] in constructing a complete binary tree out of chips containing smaller 
trees, and by Bhatt and Ipsen [3] in embedding complete binary trees into a Boolean cube. 

3.1     Embedding a P(k,d) hyper-pyramid in a Boolean cube with minimal 
expansion and dilation d 

3.1.1     Dilation 

Theorem 1 A P(k,d) hyper-pyramid, d > 2, can be embedded into an Hkd+\ Boolean cube with 
dilation d. 

Proof: Instead of considering the embedding of a P(k,d) hyper-pyramid we consider the em- 
bedding of the corresponding two-rooted hyper-pyramid P{k, d). The dilation for the two-rooted 
hyper-pyramid is an upper bound on the dilation for the hyper-pyramid with a single root. Let 
fk be the function that maps a two-rooted hyper-pyramid P(k,d) into an Hkd+i cube with dila- 
tion d. We will define fk (for a fixed d) by a recursive construction on k and prove the theorem 
by induction. The induction hypothesis is that for k < n, a two-rooted hyper-pyramid P(k,d) 
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can be embedded into an Hkd+1 cube with dilation d and the two roots mapped to adi 
cube nodes. J acent 

Basis:  For k = 0, the two-rooted hyper-pyramid P(0,d), which has only two roots, are 
mapped to adjacent cube nodes: 

/o(a(0,£)) = 0 and /o(a(0',e)) = 1. 

Induction: Assume that there exists an embedding function fn which satisfies the induction 
hypothesis. In order to embed a two-rooted hyper-pyramid P(n+l,d) into an #(n+1)c(+1 cube we 
consider the cube tf(n+1)rf+1 as composed of 2d copies of Hnd+1 cubes, labeled 0,1 2d - 1 
Apply fn to each Bnd+} cube. We use a superscript to distinguish nodes of different two- 
rooted hyper-pyramids P(n,d) mapped to distinct Hnd+1 cubes. The following rules define the 
embedding function /B+1 in terms of /„ for each cube. 

/n+i(a(0,e)) 

/«+i(a(0',e)) 

/n+i(a(l,/)) 

/»+i(a(t\*||j)) 

=    /n(a°(0,e)), 

/n(a2i-'(0,£)), 

■{ 
/„(a'(0',e)),    i = 0or2rf-1, 
/„(a'(0,e)),    otherwise, 

/n(a'(i,j)), i > 1. 

The first two equations define the two new roots. (The two roots can be chosen from the spare 
root, of any two adjacent cubes. We choose cubes 0 and 2-"» such that the two roots are mapped 
o cube addresses (00 0) and (10 .. .0), respectively.) The third equation defines nodes at level 

1. The last equation defines nodes at lower levels, where / is a string of length d. Figures 5 and 
6 show the induction for d = 2 and d = 3, respectively. For clarity, only the two roots of each 
cube are shown. In the figures, <t> denotes unused cube nodes (after induction), and «-" reads 
becomes . Note that the root a(0>,e) is used in cubes 0 and 2d~K Figures 7 and 8 show the 

embedding* for P(l 2) and P(l,3), respectively. For all 0 < J < 2* and 0 < m < d, we hive 
the following properties: ~       "^ u> we Ui^ 

1. namming(fn+1(a(0,e)),fn+1(a(l,j)))<d: 

ffamming(fn+1(a(0l£))Jn+1(a(l,j))) = 

J Hamming(fn(a°(0,e)),fn(a'(0,e))) = \\j\\ < rf,    if j # 0 and j * 2^ 
<Hamming(fn(a°(0,e)),fn(a

o(0',£)))=h if j = Q 

{ffamming(fn(a°(Q,e)),fn(a
2d-l(0',e))) = 2, if j = 2d~K 

2. J7amm:ns(/n+l(a(0',e)),/B+,{q(l, j))) < d: The proof follows that of 1. 

3. f™*^^ < 2: The distance is 1 except if m * d - 1 and 
J = 0 or 2a     for which the distance is 2. 

4. Hamming(fn+1(a(0,e)),fn+l(a(0',e)))= 1. 

5. The Hamming distance between corresponding nodes of adjacent cubes is 1. 
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cube 2 
a2(0,0 "*<"' «2(0',O • 

cube 3 
a3(0,e) -3^' 

-a(0',0 -a(l,2) -«(1,3) 
«3(0',0  • 

cube 0 
o°(0.f) «°'n' 

-»«(0,c) 

£\0\O 
-«(1,0) 

cube 1 

^(0,0 o^O'.e) 

-«(1,1) -4> 

Figure 5:  Forming a two-rooted hyper-pyramid P(n + 1,2) out of 4 copies of P(n,2) hvper- 
pyramids. 

cube 6 
«6(0,O -6"v «6(0',0 

cube 2 
a2(0.£) »2(M 

«(1,6) 

a2(0',£) 

-0 -«(1,7) 

cube 3 

cube 7 

a7(0,0 a7(0',O 

-«(1,2) 

a\0,t 

«3(0,0 •- 
-«(1,3) 

«d(0',0  • 

cube 4 

«4(o',0 
o(0',e) -«(1,4) -a(l,5 

cube 5 

a5(0,£) a5(0',O 
 • 

cube 0 

ao(0.Q  a°(0',e) 
cube 1 

«^9,0 fl^o'.o 
-o(0,O -«(1,0) -a(l,l) 

-• 

Figure 6:  Forming a two-rooted hyper-pyramid P(n + 1,3) out of 8 copies of P(n 3) hv 
pyramids. v   '   '   • per- 

«(1,3) 

«(1, 

«flfcj" fl,2) 

«(0,0 a(l,0) 

Figure 7: A two-rooted P(l,2) hyper-pyramid embedded in an H3 cube with dilation 2. 
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«(1,3) 

«(1, 

of *2)" 

«(1,7) 

«(!j 

Of 1,6)" 

o(0,e) a(l,0) a(0',£) a(l,4) 

Figure 8: A two-rooted P(l,3) hyper-pyramid embedded in an E4 cube with dilation 3. 

(00000) 

Figure 9: The cube addresses of the nodes of an embedded hyper-pyramid P(2, 2). 

6. The dilation of an edge in P(n, d) is preserved. 

The induction hypothesis follows from these properties. I 

By substituting fk recursively as denned by the induction rules an explicit expression for fk 
is obtained 

f(0w+>), i = o, 
AK*',j'))=Uiow), t = o', 

I (;||z0<*-'X),    l < i < k, 

where x = 1, if (jd.2jd-3 ■ - -Jo) = 0; and x = 0, otherwise. 

Figure 9 shows the cube addresses of the nodes of the hyper-pyramid P(2,2). 

The expansion of the embedding function fk is less than 2 (except for it = 0). 
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3.1.2     Congestion 

Next we derive upper and lower bounds for the congestion. 

Lemma 7 An upper bound of the congestion for embedding a P(k, d) hyper-pyramid in an Hkd+i 
Boolean cube is ^+7. 

Proof: The proof can be done by induction based on the following arguments. The maximum 
edge congestion is caused by the hyper-pyramid edges between the root node and its 2d children. 
Among the 2d children, 2d - 2 of them are in an Hd cube. The other two children are neighbors 
of the two roots, but not contained in the Hd cube. The two roots are in the same Hd cube as 
the 2^-2 children. By Lemma 4, the congestion caused by the edges between the real root and 
its children in the Hd cube is bounded from above by |^-. (We perform the hyper-pyramid 
embedding such that the two roots are adjacent, and avoid routing the edges from the real root 
through the spare root, in order to minimize the node-load.) We route the d-1 length-two paths 
from node a(l,0) or atl^-1) to its d - 1 neighbors through an unused cube node. The path 
between nodes a(0,e) and a(l,2<<-1) is routed through node a(l,0). Note that the congestion 
of the edges in the Hd cube does not increase for the next induction step. I 

Lemma 8 A lower bound of the congestion for embedding a P(k,d) hyper-pyramid in an Hkd+i 
Boolean cube is 1 + \j£=$]. 

Proof: The nodes at level k - 1 of a hyper-pyramid P(k, d) have degree 1 + (k - l)d + 2d. The 
degree of an Hkd+\ cube is kd + 1. So, a lower bound of the congestion is 

l + (k-l)d + 2d 

kd + 1 

3.1.3    Active-degree and node-load 

= 1 + 
2d-d 
kd+1 

Some nodes at level k of the hyper-pyramid P(k,d) use all edges of the node they are mapped 
to. For example, consider nodes a(l,0) or atl^"1) in Figures 7 and 8. For these nodes all the 
d + 1 cube edges are used after the first induction step. For each induction step d new cube 
edges are used. Hence, a = kd + 1. 

For the node-load /?, consider the following properties: 

1. For k = 1, ßi for the spare root js^O, for the real root it is 2d, and the maximum /?, for i 
being a node at level one is  < ^^- + d. 

2. A spare root after an induction step is a spare root also before the induction step. The /?, 
for the spare root remains 0. 
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3. A real root after an induction step is a spare root before the induction step.  The 3, for 
the node increases by 2d. 

4. A node at level one after an induction step is a real root before the induction step. The 
ß, for the node increases by at most 2jrj- + d. 

5. A node at level i, i > 1, after an induction step is a node at level t — 1 before the induction 
step. The ßi for the node increases by d. 

By these properties, one can show by induction that ßi of a node at level it - 1 is maximum, for 
* > 2. The node-load 

U*x{2d,%£ + d], k = l, 

~ 1(1+ 3^)2'+ (*-!)<*},   *>2. 

3.2    Embedding a P(k,2) hyper-pyramid in a Boolean cube with minimal 
expansion, dilation 2, and congestion 2 

3.2.1     Dilation and congestion 

Clearly, the lower bound of the dilation is 2 for k > 1 since there exist cycles of odd length in 
the pyramid. The lower bound of the congestion has been shown to be at least 2 by Lai and 
White [23] for embedding a P(fc,2,2) pyramid in an H2k+i cube for Jfc > 1. Since a P(fc,2,2) 
pyramid is a subgraph of a P(k,2) hyper-pyramid (with the same number of nodes), the lower 
bound congestion also applies to the hyper-pyramid. 

Theorem 2 A P{k,2) hyper-pyramid can be mapped into an H2k+i Boolean cube with dilation 
2 and congestion 2. 

Proof: We use the embedding function / denned in the previous section, and define a path of 
length 2 in the cube for each hyper-pyramid edge of dilation 2. 

a(0,e)-a(l,0) 
o(0,e)-a(l,l) 
a(0,e)-o(l,2) 
a(0.£) —o(l,3) 
a(l,0)-a(l,l) 
o(l,0)-a(l,2) 
a(l,l)-a(l,3) 
a(l,2)-a(l,3) 

a°(0,£)-a°(0',£) 
a°(0,e)^a1(0,e) 
ao(Q,e)~a°(0',e)^a*(0',e) 
o°(0,0- a1«),«) -a3(0,£) 
a°(0',£)-a1(0',£)-a1(0,£) 
o°(0',£)-a2(0',£) 
a1(0,£)-a3(0,£) 
a2(0',£)-a3(0',£)-a3(0,£) 

The proof is based on induction on A: and the induction hypotheses are 

1. congestion < 2 with either one of the two roots of the two-rooted hyper-pyramid selected 
as the root of the hyper-pyramid, 

2. the two roots are mapped to adjacent cube nodes, and 
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3. the cube edge between the two roots are not used. 

Note that in hypothesis 1, congestion is considered separately for the two roots. In considering 
one root the congestion contributed by the other root is ignored. 

Basis: For a two-rooted hyper-pyramid P(0,2), all three conditions are satisfied. 

Induction: Assume that the embedding function /„ extended with assignments of interme- 
diate nodes for paths of length two satisfies the induction hypotheses. fn+\ is defined in terms 
of /„. The two-rooted hyper-pyramid P(n + 1,2) embedded in an i?2n+3 cube is composed of 4 
copies of two-rooted hyper-pyramids P(n,2) each embedded in an ^2n+i cube. One of the two 
roots (i.e., the real root) in each copy becomes a node at level 1. The other (i.e., the spare root) 
either becomes one of the two new roots, or is unused. Next, consider the edges of the newly 
formed two-rooted hyper-pyramid P(n + 1,2) composed of the following three sets: 

1. Set Si: the four edges between the new root and its four children; the four edges between 
the children of the new root. 

2. Set 52: the edges between the four subpyramids, except the four edges included in the set 
S,. 

3. Set S3: the edges within the four subpyramids. 

Let J^(Si). F(S2) and 7"(S3) be the set of cube edges to which the edges in the sets Sj, S2 and 
S3 are mapped. If we can show that 

1. the sets ^(Sj), T{S2) and ^(S3) are disjoint, 

2. each of the sets T{Si), ?{S2) and F{S3) gives rise to a congestion < 2, 

3. conditions 2 and 3 of the induction hypotheses are satisfied, 

then the proof is complete. Figure 10-(b) shows the embedding of the set Si. The empty node 
"o" next to a solid node "•" represents an intermediate node for a length-two path. Only the 
edges in /"(Si) are shown. For comparison, the logical edges which describe the connection of 
the hyper-pyramid are shown on the left, Figure 10-(a). 

Note that /"(Si) only contains cube edges of the 3-dimensional cube formed by the eight old 
roots prior to induction. The set ?{S2) only contains edges in the last two cube dimensions, 
i.e., 2n -f 1 and 2n + 2, if we label the cube dimensions from 0. But, none of these edges fall 
in the subcube formed by the old roots, since they are direct connections between nodes at 
levels greater than 0 in the two-rooted hyper-pyramids P(n, 2). From induction hypothesis 3 
and the definition of the set S3 it follows that the set ^(S3) does not contain any edges in that 
cube either. Hence, .F(Si) is disjoint with respect to the sets ?{S2) and F(S3). Since -F(S2) 
only contains edges in the last two dimensions, but ?{SZ) does not contain any edges in these 
dimensions T{S2) and T(Sz) are also disjoint. 

From the definition of the embedding function / and the path selection indicated in Figure 
10, it follows that con?(^(Si)) < 2. The definition of the embedding function immediately gives 
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(a) logical edges of hyper-pyramid 

<z2(0,£)      a2W. 
— afty.e)   — afl,2) 

(b) physical edges/paths in cube 

Figure 10: (a) The set of edges Si of hyper-pyramids, (b) The set of edges F(Si) of cube. 

cong(f(S2)) = 1. From condition 1 of the induction hypotheses it follows that cong(F(S3)) is 
preserved. Hence, congestion < 2 is preserved since the sets F(St), F(S2) and ?(S3) are disjoint. 
Condition 2 of the induction hypothesis follows directly from the definition of the embedding 
function /n+i, see Figure 10. Condition 3 follows from the definition of the embedding function 
/ and the path selection as given in Figure 10. None of the sets f(Si), Jr(S2) and -F(S3) contain 
the cube edge between the two new roots. I 

3.2.2     Active-degree and node-load 

The embedding function described here is a special case of the modified function described in 
Section 3.1. Since a = kd + 1 in Section 3.1. we have a = 2Ä: + 1 here. By substituting d = 2 in 
the node-load derived in Section 3.1, we have 

ß<(8, k=h 

^-{2k + 8,    k>2. 

However, a slightly tighter bound for / with the path specification given in this section can be 
proved to be 

M      \2k 
by induction using the follow facts: 

.2*+ 5,    k>2, 

1. For k = 1, the maximum ft for a node i being the spare root, the real root and a node at 
level one are 0, 4 and 5, respectively. 

2. A spare root after an induction step is a spare root before the induction step. The ft for 
the spare root remains 0. 

3. A real root after an induction step is a spare root before the induction step. The ft for 
the node increases by 4 after the induction step. 

4. A node at level one after an induction step is the real root before the induction step. The 
ft for the node increases by 5 after the induction step for the path selection made in this 
section (compared to an increase of 8 for the embedding for arbitrary d). 
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5. A node at level :', i > 1, after an induction step is a node at level t - 1 before the induction 
step. The 0, for the node increases by 2 after the induction step. 

3.3    Embedding one hyper-pyramid P(k,d) and (2^-2) hyper-pyramids P{k- 
l.cO's in a Boolean cube with expansion sa 1 and dilation d + 1 

Even though minimal expansion (i.e., expansion < 2) is achieved in Section 3.1, 2d - 2 cube 
nodes are not used in each induction step. It is possible, however, to embed a P{k,d) hyper- 
pyramid and 2d - 2 smaller hyper-pyramids P(k - l,d) into an Hkd+i cube at the same time, 
such that onlv one cube node is not used. 

3.3.1     Dilation 

Theorem 3 A hyper-pyramid P{k,d) together with (2d - 2) hyper-pyramids P(k - l,d), k > 1 
and d > 2, can be embedded in an Hkd+\ Boolean cube with expansion ss 1 (only one cube node 
is not used) and dilation d + 1. 

Proof: In the following, the subscript on P, P, and a is used to identify different hyper-pyramids 
and vertices therein. For notational convenience, we let ai(0,e) denote ao(0',e). For the proof 
we consider one two-rooted hyper-pyramid P(k,d) and 2d - 2 hyper-pyramids P(k- l,d) (with 
single roots). Let the mapping function be fk. The proof is by induction and the hypotheses 
are that for k < n the following two conditions hold: 

1. A two-rooted hyper-pyramid P0{k,d) and (2rf-2) hyper-pyramids Pj(k-l,d), 2<j< 2d> 
k>\ and d > 2, can be embedded in an Hkd+\ Boolean cube with dilation d+ 1. 

2. Hammmg(fk(ax(0,£))Jk(ax{m)(0,e))) = 1 for all 0 < x < 2d, 0 < m < rf, i.e., all the 
2d roots are mapped to an Hd subcube in the Hkd+\ cube, and the two roots of P0 are 
mapped to adjacent cube nodes. 

Basis: For k = 1, the two-rooted hyper-pyramid P0(l,<f) contains the roots ao(0,c) and 
ci(0,e) and the base Hd (a0(l, j),0 < j < 2d). For each of the (2d-2) hyper-pyramids Px(0,d). 
x€ {2,3,...,2d-l},/'x(0,<f)istherootnode. Define jx as: 

/i(M°iO) = j||0,        V0<j<2rf, 

/i(a0(l,j)) = j||l,        V0<j<2d. 

It is easily seen that /i satisfies the two conditions.  Figures 11 and 12 show the mapping for 
d = 2 and d = 3, respectively, and k = 1. 

Induction: Assume that the mapping /„ satisfies the above two conditions. Consider a 
#(n+i)rf+i cube with hyper-pyramids embedded by the embedding function /„ in each of the Hd 

cubes of dimension nd + 1. We define /n+1 in terms of /„ by the following rules: 

/B+i(a,(0,e))   =    /„(a$(0,e)), 
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«o(0,e) 

«3(0,«) oo(l,3) 

ao(0',£) = ajXer«) 

«o(l,2) 

«o(l,0) 

Figure 11:  The basis:  A two-rooted hyper-pyramid P0(l,2). a hyper-pyramid P2(0,2) and 
hyper-pyramid P3(0,2) embedded in an H3 cube with dilation 3. 

«1(0, 

«3(0,«)        a0(l,3) ar(0,e)        a0(l,7) 

«5(0, «0(ly 

OrftO.e) 1.2) 

«o(0,«)        ao(l,0) 

«o(l 

<WtO,£) 1,6) 

a4(0,e)        a0(l,4) 

Figure 12:  The basis:  A two-rooted hyper-pyramid P0(l,3) and 6 hyper-pyramids P,(0.3)*s. 
j6{2.3 ,7}, in an H4 cube with dilation 4. 

20 



/n+1(ao(l,/))   =    fn(a[(0,e)), 

/«+i(ao(*,/||i))   =    fn(al
0(i-l,j)),        2<:<n+l, 

/n+i(a,(t,/||i))   =   /n(o^(/it)(i- l,j)),        1 < i < n+ 1, 2 < x< 2d, 

where i(£,x) = ("rd-ild-2 ■ • -7o)- The value of 7 is determined from I and x as follows: if 
£m = 0 and x(f_]x(i_2 .. .im+i ^ 0, then 7m = 1, else fm = 0, 0 < m < d — 1. The superscript 
£ identifies nodes of different hyper-pyramids mapped to distinct Hnd+\ cubes, as before. So. 
/n(a£(j',j)) = £\\f„(az(i,j)). By rule 1 of the recursive definition above, we select the root 
<2o(0,£) of Po(n,d) to be the spare root. In the induction 2d cubes with embedded hyper- 
pyramids are used to form a new embedding. The number of spare roots in the 2d cubes are 2d. 
Two of them serve as the two new roots of Po(n + l,d) and the remaining 2d — 2 spare roots 
serve as the new roots (one for each) of the 2d — 2 P(n,d) hyper-pyramids. (For notational 
convenience, we choose the two new roots of P{n + 1, d) from cubes 0 and 1, instead of choosing 
from cubes 0 and 2d~l as in Section 3.1.) By rule 2, we select ai(0,e) as the real root of the 
two-rooted hyper-pyramid Po(n,d) in each Hnd+i cube, i.e., it becomes a node at level 1 of 
Po(n + 1> d) hyper-pyramid. Rule 3 moves nodes of Po(n, d) at level i — 1 to nodes of Po(n + 1, d) 
at levels t > 2. Rule 4 moves nodes of the Px(n - l,«f) hyper-pyramids, 2 < x < 2d, at levels 
t — 1 to nodes of the Px(n,d) hyper-pyramids at level t. Note that rule 4 is complicated by the 
exchange between adjacent hyper-pyramids as denned by 7. For example, for d - 3 and £ = 0, 
7 = 001,001,011,011,011 and 011 for z = 2,3,4,5,6 and 7, respectively. A naive embedding 
without exchange, i.e., 7 = 0, would have dilation 2d for some hyper-pyramid. 

Before proving that /n+1 is well-defined and also satisfies the induction hypotheses, we give 
some examples of the induction step. Figure 13 shows the induction step for d = 2. For 
clarity, only the 4 interesting root nodes are shown in each Hnd+\ cube, and the corresponding 
connections between the four cubes are omitted. The two arrowed lines denote that the roles of 
P2 and P3 are exchanged in even cubes. Figure 14 shows the edge dilation of the newly formed 
edges of the first two levels. For convenience, we draw two instances of each of the nodes ao(l, j), 
0 < j < 4. Multiple instances refer to the same cube node. The solid, dashed and dotted lines in 
the figure represent Hamming distances of 1, 2 and 3, respectively. Note that by rule 4, p2{n,2) 
and P3(n,2) embedded in cubes 0 and 2 are exchanged (within the same cube). Without these 
exchanges, the dilation for P3 would have been 4. 

Figure 15 shows the induction step of the naive embedding (7 = 0) for d = 3. The dilation 
ranges from d + 1 to 2d depending on hyper-pyramid. With the exchanges defined by 7, the 
embedding is shown in Figure 16. The exchange is indicated by a two-way arrow. Tables 1 
and 2 give the dilations of various edges and dilations of different hyper-pyramids P: for the 
embeddings shown in Figures 15 and 16, respectively. 
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-«3(1,2) 
**  

«5(o.e) 
-Ml, 2) 

-*• 

cube 2 

ag(0,£) 
- a7(Q,e) 

al(Q.s) 

-a0(l,2) 

a?(0,£) 
-«2(1,3) 

2?(0,£) 
-«3(1,3) 

— a3(0, e) 
«l(0,6) 

-a0(l,3) 

a§(0,£) «§(0,e) 
-a2(l,0) 

ag(0,e) 
— ao(0,e) 

«?(0,£) 
-ao(l,0) 

«2(0,6) 

-fl2(l,D 
■  

«3(0,6) 

-03(1,1) 

cube 1 

«0(0,6) 
-«1(0,6) 

«1(0,6) 
-ao(l,l) 

Figure 13: The induction: Forming a two-rooted P0(n + 1,2), a P2(n,2) and a P3(n,2) out of 
four copies of «a two-rooted F0(n,2), a />2(n - 1,2) and a P3(n - 1,2)". The two arrowed lines 
denote that the roles of P2 and P3 are exchanged in even cubes. 
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02(1,2) 

02(1,0) 

flo(l,2) 

«2(1,1) 

a0(1.3) 

ao(l,0) ao(l,l) 

a3(l,2) 03(1,3) 

oo(l,2) 

«3(1,1) 

oo(l,3) 

<K>(1,0) oo(l,l) 

Figure 14: The edge dilation of the newly formed edges of nodes in the first two levels. The 
solid, dashed and dotted lines in the figure represent Hamming distances (edge dilations) of 1. 
2 and 3, respectively, in cube. 
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a6(l,6)        a7(1.6) 
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Figure 15: The induction step of the naive embedding (7 = 0) for d = 3. The dilation is 6. 
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«j(0,O a,(l,0) «i(l.l) Ml, 2) 0,(1,3) «,"(1,4) «,(1,5) «,(1,6) «,(1,7) dilation 
a0(0,£) 1 2 2 3 2 3 3 4 4 

fli(0,e) 2 1 3 2 3 2 4 3 4 
o2(0.c) 2 3 1 2 3 4 2 3 4 
a3(0.e) 4 3 3 2 5 4 4 3 5 

a<(0,£) 2 3 3 4 1 2 2 3 4 
«s(0,e) 4 3 5 4 3 2 . 4 3 5 
ae(0,e) 4 5 3 4 3 4 2 3 5 
a-(0,5) 6 5 5 4 5 4 4 3 6 

Table 1: The Hamming distance between the root and its children for the naive embedding. 

«,(o,0 «,(1,0) o,(l,l) o,(l,2) o,(l,3) «,(1,4) «,(1,5) o,(l,6) o;(l,7) dilation 

ao(0,O 1 2 2 3 2 3 3 4 4 
«i(0,0 2 1 3 2 3 2 4 3 4 
a2(0,e) 3 3 2 2 4 4 3 3 4 
«3(0,£) 3 3 2 2 4 4 3 3 4 
MO,e) 4 4 4 4 3 3 3 3 4 
a5(0,e) 4 4 4 4 3 3 3 3 4 
a6(0.s) 4 4 4 4 3 3 3 3 4 
07(0,0 4 4 4 4 3 3 3 3 4 

Table 2: The Hamming distance between the root and its children for the improved embedding. 

We now first prove that the recursive definition is "well-defined". By "well-defined", we mean 
that "if fn+1(ax(i,£\\j)) = /n+i(aI-(:',£'||j')), then i = x', i = i', / = £' and j = j'. This is obvi- 
ous if i(l, x) = 0. With 7 a function of £ and x, it suffices to prove that fn+i{as9y{ijX)(i,£\\j)) = 

fn(a'x(i - 1, j))- From the definition /n+1 (ax^{u)(i,£\\j)) = fn(ai^{t<x)(By{e,x^x))(i - l,j)). 
So, we simply prove that f(£,x) = f(£,x® t(£,x)). This is true by Lemma 11 in Appendix A. 

We now prove that the recursive definition satisfies the induction hypotheses. Condition 2 
of the induction hypotheses is preserved due to rule 1 in the definition of /n+1. In order to 
prove that condition 1 holds for k = n + 1, we partition the newly formed hyper-pyramid edges 
into three disjoint sets, Si, 52 and 53, by a definition similar to the one used in the proof of 
Theorem 2. Firstly, the dilation of edges in 53 is preserved. We prove that the dilation of 
edges in S2 is either 1 or 2 by considering the Hamming distance between /„+i(ax(i,/||j)) and 
fn+i(aAi,t{m)\\j)). 

The former term     =   /„(a^(/x)({ - 1, j)) 

=   ^ll/n(ax®7(/,r)(i - 1,»), and 

the latter term     =    /„(o^{m}x)(f - 1,;)) 
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=   '{n}ll/n(a^(/{m}ir)(i-l,.7)). 

Let t{C,x) = y. Then, from the definition of f(i,x), one can derive 7(^m>,z) = y or y(m>. So. 
the dilation in S2 is either one or two. The dilation two occurs when there is an exchange opera- 
tion involved in one side of the cubes. To determine the edge dilation in Si, we consider the sub- 
sets: Sji, the edges between nodes at level 1, and S12, the edges between roots and nodes at level 
1. The edge dilation in Sn is either 1 or 2 for the same reasons as the dilation of edges in the set 
S2 is at most 2. For the edge dilation in 512, consider Hamming(fn+1(ax(0,£)),fn+1(ax(l £))) 
It is IKH + 1 < d + 1 if x = 0 or 1. For x jt 0 and x ? 1, /n+1(ar(0,£)) = /B(a§(0,e)j and 
fn+i(ax(l,e)) = fn(alS>Mts)(0, e)). So, the Hamming distance is ||i © f(£, i)|| + ||x © £\\, which 
is at most d + 1 by Lemma 12 in Appendix A. I 

3.3.2    Congestion 

For the congestion we show that the dilation d + 1 embedding yields a congestion of at most 
(d+ ^(-STT + x)- However, a dilation 2d embedding yields a congestion of rf| + IgL + 1, which 
is the same as the congestion for the embedding of a single hyper-pyramid in the same-sized 
Boolean cube. The following two lemmas describe path assignments and prove the corresponding 
congestion. Intuitively, in Lemma 9 the paths are selected by first routing between the 2d cubes 
of an induction step and then routing within these cubes in going from a root to its children. 
Figure 16. In Lemma 10 routes are selected by first routing within the cubes, then between 
them. 

Lemma 9   The congestion for the dilation d+ 1 embedding in Theorem 3 is (cf + 1)( — + iy 

Proof: We give a sketch of an inductive proof. Let the path from a,-(0,«) to a,(l,j) be passing 
through an intermediate node a,-(0,e). For example in Figure 16, the path from a3(0,e) to 
03(1,4) goes through the intermediate node o4(0,e). Note that there are 2d roots and each root 
has paths to 2 intermediate nodes. The 2d roots are the same set of nodes as the 2d intermediate 
nodes. Consider the first half of all the paths from the 2d roots of the form ot(0,£) to all the 
2 intermediate nodes. This is the same as embedding 2d flat trees of size 2d rooted at different 
nodes in an Hd cube. By Lemma 5, it is bounded from above by *$£- + d. For the second half 
of all the paths ,it+is the same as embedding a single flat tree in an Hd cube, which is bounded 
from above by -^ by Lemma 3. The inductive hypotheses are that the edge congestion of 

the new d cube dimensions is at most *g£- + d (i.e., the first half of the paths). During an 
induction sterj, edges of the considered d cube dimensions will increase their edge congestions 
by at most ^ + l (i.e., the second half of the paths plus the edge introduced bv the exchange 
operation 7). Note that the paths assignment for the basis, see for example Figure 12, can be 
done such that the edge congestion is 1 for edges of dimensions 0, and is at most £2. for edges 
of dimensions 1 to d. I + 

Lemma 10   The congestion for the dilation 2d embedding in Theorem 3 is |"2f] + 2fli + 1. 
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Proof: We give a sketch of an inductive proof. We choose the naive embedding which has 
dilation 2d, i.e., 7 = 0 as in Figure 15. In assigning the paths, some of them are not shortest 
paths, but do not afTect the dilation. Let. the path from a,(0,e) to Oi(l,j) go through the 
intermediate node a,(l,t). For the second half of all the paths, the congestion is < ^^ due to 
Lemma 3. For the first half of the paths, 2d paths need to be embedded between a pair of nodes 
in an Hd cube. At the expense of increasing the dilation by two when the distance between the 
pair of nodes is less than d, the congestion is [2_]. This congestion is realized by making use of 
the d edge-disjoint paths between any two nodes in an Hd cube [30]. The length of the first-half 
paths is < d + 1, and the length of the second-half paths i6 < d. However, only one of the 
second-half paths is of length d, and not all of the first-half paths are of length d+1. The paths 
can be paired up such that the length is < 2d. The inductive hypotheses are that the edge 
congestion of the newest d cube dimensions is at most 2^-y + l (i.e., the second half of the paths 
plus the edge between nodes of level one). During an induction step, edges of the considered d 
cube dimensions will increase their edge congestions by at most f^-] (i.e., the first half of the 
paths). I 

3.3.3    Active-degree and node-load 

Some nodes at level k of the hyper-pyramid Po(k,d) use all edges of the cube nodes to which 
they are mapped. For example, consider node ao(l,0) or ao(l,l) in Figures 11 and 12. Each 
uses all the d+1 cube edges after the first induction step, and each uses all the d new cube 
edges after every additional induction step. Hence, a = kd + 1. 

For the node-load, we follow the path assignments in the proof of Lemma 10, which is of 
dilation 2d and congestion [2_] + 2^- + l. For convenience, we use "large root", "small roof, 
"large node" and "small node" to represent "the real root of the large hyper-pyramid", "the 
root of a small hyper-pyramid", "a node of the large hyper-pyramid" and "a node of a small 
hyper-pyramid", respectively. We show that the node-load 

f2', *=1, 
ß = < 3 • 2d, Jb = 2, 

,(3 + 3T2)2<i + (*-3K   *>3, 

by induction based on the following properties: 

1. For k = 1, the maximum ßi for a node i being the spare root, the large root, one of the 
small roots, and one of the large nodes at level one are ^j, 2d, ^y and d+1, respectively. 

2. A spare root after an induction step is a spare root before the induction step. The node- 
load for the node does not increase during an induction step. 

3. A (large or small) root after an induction step is a spare root before the induction step. 
The node-load for the node increases by 2d during an induction step. 

4. A large (small) node at level one after an induction step is a large (small) root before the 
induction step. The node-load for the node increases at most by 2d+1. 
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5. A large (small) node at level i, i > 1, after an induction step is a large (small) node at 
level t - 1 before the induction step. The node-load for the node increases by d. 

The node-load ft is dominated by a node at level k - 2 for it > 3. 

For the dilation d + 1 and congestion 0{2d) embedding, we follow the path assignments 
described in the proof of Lemma 9 except that Lemma 6 is applied in the proof instead, i.e.. 
no path is passing through the spare root. The congestion remains of the same order. The 
node-load can be bounded from above by 0(d2d) + 0{kd). The proof is based on the following 
properties: 

1. For k = 1, the maximum node-load ft for a node i being the spare root, the large root. 
one of the small roots, and one of the large nodes at level one are 2£I, 2d, £ü and d+l. 
respectively. +2 

2. A spare root after an induction step is a spare root before the induction step. The node- 
load for the node does not increase during the induction step. 

3. A (large or small) root after an induction step is a spare root before the induction step. 
The ft for the node increases by 0(d2d) during the induction step. This is because the 
edge congestion of the d edges in the d new dimensions is of order 0(2d), Lemma 5. 

4. A large (small) node at level one after an induction step is a large (small) root before the 
induction step. The 3, for the node increases at most by O(^). 

5. A large (small) node at level i, i > l, after an induction step is a large (small) node at 
level i - 1 before the induction step. The ft for the node increases by 0(d). 

3.4    Embedding one hyper-pyramid P(k,2) and two hyper-pyramids P(k - 
l,2)'s in a Boolean cube with expansion a 1, dilation 3 and congestion 3 

3.4.1     Dilation and congestion 

In this section, we show that for d = 2 the results in the previous section can be specialized so 
that the congestion is at most 3. 

Theorem 4 A hyper-pyramid P(k.2) and two hyper-pyramids P(k - 1,2), k > 1, can be em- 
bedded in an H2k+\ Boolean cube with expansion « 1, dilation 3 and congestion 3. (Note that 
congestion 3 is obtained by considering all three hyper-pyramids simultaneously.) 

Proof: We use the same embedding function / as for the P(k,d) hyper-pvramids in Theorem 
3. In addition, we define all the intermediate nodes of paths generated by hyper-pyramid edges. 

ao(0,e)-*ai(l,0) 
a0(0,£)-.«,(l,l) 
ao(0,e)-.ai(l,2) 

ag(0,£)-a°(0,O 
a8(0.e)-a°(0,e)-a}(0,e) 
a°(0,£)-aO(0,e)-.af(0,£) 
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a0(0,e )-a,(l,3) «8(0,e )-ag(0,£ )-a3(0,£)-a3(0, 0 
flo(M )-a0(l,l) :     a?(0,e )-a}(0,e 
a0(l,l )-oo(l,3) :     a}(0,£ )-a?(0,£ 
o0(l,3 )-a0(l,2) :     a?(0,£ )-a?(0,£ 
flo(1.2 )-a0(l,0) :     o?(0,£ )-a?(0,£ 

o2(0.e )-a2(l,0) ag(0,£ )-a?(0,£ -a§(0,£)-a°(0, 0 
a2{0.e )-a2(l.l) og(0,£ ) —fll(0,c )-a°(0,£)-a^(O, 0 
02(0,f )- 02(1.2) ag(0,£ )-o?(0,£^ >-fl§(0,£) 
a2(0,£ )-o2(l,3) 4(0, e ) —o^O,^ )-ai(0,£) 
a2(1.0 )-a2(l,l) O§(0,£ )-a3(0,£ )-O2(0,£) 
02(1,1 )-a2(l,3) a^(0,£ )-«5(0,e. 
02(1.3 )-a2(l,2) a2(0,£ )-«i(0,e, -a2(0,£) 
o2(l,2 )-a2(l,0) al(0,£ >-a§(0,e; 

a3(0.£r] -03(1,0) «3(0»^ -O^(0,£) -aj(0,£)-a5(0, 0 
oa(0,e) -03(1,1). Oo(0,e; -a?(0,£) -a3(0,£)-a^(0, 0 
O3(0,£) -o3(l,2). «o(0.e) -o|(0,e) -a^(0,£) 
a3(0,£) -03(1,3): og(0,c) -a?(0,£) -ai(0,£) 
a3(1.0; -03(1,1) o2(0,£) -a°(0,£) -a3(0,£) 
a3(l.l] -03(1,3) a3(0,£) -oi(0,e) 
03(1.3) -a3(l,2): o|(0,e) -a§(0,e) -al(0,£) 
03(1.2) -a3(l,0): a2(0,£) -a°(0,£) 

We prove the theorem by induction on Ar. The induction hypotheses are 

1. congestion < 3, 

2. cong{e) < 2 for all edges e in cube dimension 2* - 1, i.e., the dimension between cube *0 
and cube *1 of the previous induction step, where "*" is 0 or 1. 

3. con0((A(a0(0,£)), A(ao(0',£)))) = 0, 

4. conff((A(a2(0,£)),/fc(a3(0, £))))< 1, 

5. conff((/fc(ao(0,£)),/i(a2(0,£))))< 1, and 

6. cong((fk(a0(0',e)),fk(a3(0,e))))<l. 

Note that in order to determine the congestion, both roots of P0 need to be considered. How- 
ever, they are considered separately. Figure 17 shows the embedding with the path assignment 
for the basis k = 1. The notation of "o" is the same as in Figure 10. It is easily seen that all the 
6 conditions of the induction hypothesis are satisfied for k = 1. Due to the symmetricity of the 
two roots, a0(0,£) and ai(0,£), the congestion for either one being selected as root for P{k,d) 
is the same. Now, assume the 6 conditions of the induction hypotheses are satisfied for k = n. 
Consider the three disjoint sets of hyper-pyramid edges Su S2 and S3 of the newly formed 
hyper-pyramids for k = n + 1 as defined before, and ^(Sj), .F(S2) and .F(S3) the corresponding 
cube edge sets after the embedding.  Figure 18 shows the embedding for the induction step of 
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edges in -F(5i)- For clarity, P0 is shown in (a), P2 in (b) and P3 in (c). The congestion of each 
cube edge for the induction step is shown by a label on the edge in Figure 18-(d). (d) is derived 
by overlapping (a), (b) and (c). Figure 19 shows the assignment of length-two paths in JF(S2). 

We now show that the 6 conditions also hold for k = n + 1. From Figure 18-(d), conditions 
3 to 6 are easily seen to be satisfied for k = n + 1. As for conditions 1 and 2, consider the 
following facts: 

• .F(Si) contains cube edges of dimensions 2n - 1, 2n, 2n + 1 and 2n + 2. Further, they are 
the cube edges of the HA cube formed by the 16 old roots, Figure 18. 

• ^{ST) contains cube edges of dimensions 2n, 2n + 1 and 2n + 2. Further, if e = {u.v) e 
■F(S2), then the two cube nodes u and v correspond to hyper-pyramid nodes at levels 
greater than one. 

• /"(53) contains cube edges of dimensions 0 to 2n. 

Clearly, ^(500^(52) = «I) from the first two facts. Then, condition 2 also holds for it = n+1 
by the edge congestion of dimension 2n + 1. see Figures 18-(d) and 19, and the fact that JT(Sx) 
and .F(S2) are disjoint. In proving that condition 1 is preserved, consider the following: 

• cong(e) < 3 for any e 6 ^"(5,) n ?(S3): F(SX) n T{S3) only contains cube edges of 
dimensions 2n- 1 and 2n. Consider the congestion of the edges (/„(ao(0, £)),/„(a0(0'.£))), 
(/n(a2(0,£)),/n(a3(0,O)), (/n(ao(0,£)),/n(a2(0.£))), (/„(ao(0\e)),/n(a3(0,e))), in each 
of the 4 cubes from the sets /"(S^ and ^(53). They are at most 3, 1, 2 and 2 for ^(Sj) as 
seen from Figure 18-(d), and at most 0, 1, 1 and 1 due to conditions 3 to 6 of the induction 
hypotheses for k = n. Therefore, the edge congestion of these 4 cube edges in each cube 
is at most 3. 

. cong(e) < 3 for any e 6 -F(S2) n JF(S3): ^(S2) n _F(S3) only contains cube edges of 
dimensions 2n - 1. From Figure 19, the edge congestion contributed by 7"(S2) is one. Bv 
condition 2 of the induction hypotheses for k = n, the same edges have a congestion of at 
most 2. Hence, the total congestion of these edges is at most 3. 

• cong(e) < 3 for any c 6 -F(Si) - 7"(53): It is obvious from Figure 18. 

• cong(e) < 3 for any c € T{S2) - ^(53): The edge congestion contributed by T(S2) is one 
except that the edges in dimension 2n + 1 in Figure 19 is two. 

• cong(e) < 3 for any e G ?(S3) - JT^) - JT(52): By condition 1, the congestion is at most 
3 for cube edges which do not have any new hyper-pyramid edges mapped onto them. 

Therefore, the congestion of fn+x is at most 3 and satisfies condition 1 of the hypotheses. I 
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3.4.2    Active-degree and node-load 

The active-degree of the embedding function is 2k + 1.   For the node-load, we consider the 
following facts: 

1. For k = 1, the maximum /?, for a node t being the spare root, the large root, one of the 
small roots, and one of the large nodes at level one are 0, 4, 2 and 7, respectively. 

2. A spare root after an induction step is a spare root before the induction step. The ß, for 
the node does not increase during the induction step. 

3. A large root after an induction step is a spare root before the induction step. The ß, for 
the node increases at most by 4 during the induction step. 

4. A small root after an induction step is a spare root before the induction step. The ft for 
the node increases at most by 6 during the induction step. 

5. A large (small) node at level one after an induction step is a large (small) root before the 
induction step. The ß, for the node increases at most by 7. 

6. A large node at level i, :' > 1, after an induction step is a large node at level t — 1 before 
the induction step. The ß, for the node increases by 2. 

7. A small node at level i, i > 1, after an induction step is a small node at level i — 1 before 
the induction step. The ß, for the node can be arranged such that it increases by 2 and 4 
alternately. 

By these facts, one can prove inductively that the node-load 

„ _ (3k+ 4     k is 
P ~ I 3*+ 5,    Jt is 

odd, 
even. 

It is possible to have a node-load of 0(2k), if the dilation is relaxed to 4 and congestion 
to 5. Specifically, we follow the path assignments described in the proof of Lemma 10 without 
exchange of Pi and P3, i.e., 7 = 0. The proof is based on facts similar to the ones above except 
that /?, in items 4, 5 and 7 above become 4, 9 and 2, respectively, after the induction step. The 
node-load is 

M      \ 2k + 9,    k > 2. 

3.5    Remarks 

When we incorporate d = 1 into Theorem 1, the theorem becomes "A P{k,d) hyper-pyramid 
can be embedded in an Hkd+i Boolean cube with dilation max(d, 2)". As a result, a P(k.l) 
hyper-pyramid can be embedded in an Hk+\ Boolean cube with dilation 2. Figure 20 shows 
a P(3,l) hyper-pyramid. Since an X-tree [11] of k levels is a subgraph of the JP(Jt, 1) hyper- 
pyramid, an X-tree can be embedded in a Boolean cube with expansion < 2 and dilation 2. 
Figure 21 shows a 3-level X-tree. 
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Our result degenerates to that "a complete binary tree can be embedded in a hypercube with 
expansion as 1 and dilation 2", since a P(k, 1) hyper-pyramid contains a complete binary tree 
as a subgraph. This result is not new and was first discovered by Nebesky [22] and rediscovered 
in [35], [3] and [10] independently. All embeddings except the one in [35] also guarantee that 
only one of the tree edges is of dilation 2. Our method is the same as that of [35] in which for 
every non-leaf node the edge to the left child is of dilation 1 and the edge to the right child 
is of dilation 2. However, in our embedding and the embedding in [35], all nodes at the same 
level forms a subcube and therefore has additional adjacencies, Figure 20. Our embedding and 
the embedding in [35] are equivalent to labeling a complete binary tree according to an inorder 
traversal [21] with a starting index of 0 or 1. Such an embedding was also used in [18,17]. 

Notice that a dilation 2 embedding of an X-tree can also be obtained by an inorder traversal 
by interpreting the label as a binary-reflected Gray code [28], as observed by Bhatt [l], Figure 
22. (This is due to the property that two binary-reflected Gray codes with a power of two 
difference in their addresses is at most Hamming distance 2 apart [28].) However, the number 
of edges with dilation 2 is higher for such an embedding than for our embedding. 

When the cube connections at level t are ignored for 0 < t < fc then the P(k,d) hyper- 
pyramid becomes a fc-level complete (2d)-ary tree. As a corollary of Theorem 1, a it-level 
complete n-ary tree can be embedded in a Boolean cube with dilation max(2, flog2 n]) and 
expansion 2fcflo«*n1+1/a£fi. The expansion is less than two when n is a power of two. The 
previous result by Wu [35] has dilation 2flog2 n\. Similarly, a corollary of Theorem 3 is that a 
fc-level complete n-ary tree together with 2^*1 - 2 (it - l)-level complete n-ary trees can be 
embedded in a fcpog2 n] + 1 dimensional Boolean cube with dilation flog2 n] +1. The expansion 
is approximately one when n is a power of two. 
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o5(l.0)      04(1,0) 
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*t<l,Ö)"   "^1,0) 

a5(0,£)        a0(l,5) 
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«2(1/0 

ao(0,c)        ao(l,0) 

o3(lX) 

a6ti,"i)"""^a,i) 

Ol(0,£) O0(l,l) 

Figure 16: The "improved" embedding by performing an exchange described by 7 of the induc- 
tion step for d = 3 with dilation 4. 
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a3(0,e) a0(l,3) 

ao(0',£) = a1(0,£) 

5(1,2) 

ao(0,e) oo(l,0) 

Figure 17: The basis, fc = 1, satisfies the induction hypotheses. 

oo(0,e) 

(*) 

Figure 18: The path assignment of hyper-pyramid edges in S\. 
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a-2°(i.j) 

a3(i + l,*0||j)        -a2(«'+l,*0||j) 

cube *0 

a2(t + l,*l||j)        -+a3(i+l,*l\\j) 

cube *1 

Figure 19: The path assignment for hyper-pyramid edges with dilation 2 in S2. In the figure. 
* = 0 or 1. 

subcube Olli 

subcube xOll 

subcube xxOl 

subcube xxxO 

Figure 20: The topology of a P(3,1) hyper-pyramid. The dashed lines represent edges of dilation 
2. 

subcube 0111 

subcube xOll 

subcube xxOl 

subcube xxxO 
0000 0010 0110 0100  1100  1110  1010  1000 

Figure 21: The topology of a 3-level X-tree. The dashed lines represent edges of dilation 2. 
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Figure 22: The topology of a 3-level X-tree. The dashed lines represent edges of dilation 2. 

4    Summary 

We have given embeddings of pyramids in hypercubes with minimal expansion, dilation 2 and 
congestion 2.   We also give minimal expansion and dilation d embeddings of hvper-pyramids 
i.e.. pyramids where a node has 2d children interconnected as Boolean cubes. The congestion is 
bounded from below by 1 + \fe$] and from above by g|± 

The expansion is asymptotically 1.5 for the embedding of a pyramid P(k, 2,2), and 2 for the 
embedding of a hyper-pyramid P{k,d). In the first case about £ of the cube nodes are unused 
and in the second about half of them are unused. By embedding two pvramids of height ifc - 1 
together with a pyramid of height k the expansion becomes approximately one. Lai and White 
[24] gave such an embedding with dilation 3 and congestion 6. We improve it to dilation 3 and 
congestion 3. The same expansion can be obtained for hvper-pvramids bv embedding 2* - 2 
hyper-pyramids of height k - 1 with a hyper-pyramid of height Jfc. One of our embeddings has 
dilation d+ 1 and its congestion is bounded from above by 0(2«'). The other embedding has a 
congestion of \^-] + |—- + i for a dilation of 2d. 

It follows from the hyper-pyramid embeddings that a P(k, 2', 2^«) pyramid can be embedded 
in a hypercube with minimal expansion, dilation d, and a congestion of at most gf. A pyramid 

and 2-2 smaller pyramids of />(*,2'-,2'-') (possibly different t's for different pvramids) can 

n,%! Ü m a hypercube with minimal expansion, dilation d + 1, and congestion of at most 
0(2 ). The congestion can be reduced by a factor of d, if the dilation is increased to 2d A 
complete n-ary tree can be embedded in a hypercube with minimal expansion and dilation 
max(2. |log2 n]). Previously best-known embedding has dilation 2(log2 n] [35]. Our results also 
provide embeddings of degenerate hyper-pyramids such as complete binary trees and X-trees 
with minimal expansion and dilation 2. 

In the analysis we also determine the maximum number of host graph edges that are used for 
any host node the active-degree, and the maximum number of messages a node has to transmit, 
the node-load. In the embeddings we give, all edges are used for some host nodes, i.e. the active- 
degree ,s kd + 1 for a P(k,d) hyper-pyramid.   The node-load is of order 0{$+ kd)    Table 3 
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Embedding Active-degree Node-load Dilation Congestion 

P(k,d) kd+1 (l + 4T)2d + (k-l)d d 2d+i 

-   d+1 

P(k,2) 2k + 1 2k+ 5 2 2 
P(k,d) and 

(2d-2) P(k-l,d) 

kd+1 0{d2d) + O(kd) rf+1 0(2d) 

(3 + ^)2d + (Jfc - 3)d, k > 3 2<f srsi + Er + i 
P(Jt,2)and 

2 P(k- 1.2) 
2k+ 1 3it + 5 3 3 

2k + 9 4 5 

Table 3: Active-degree and node-load for hyper-pyramid embedding. 

summarizes the results. 

Appendix 

A    Proof of the lemma used in Theorem 3 

In the following, -y(£, x) is defined in Section 3.3.1 as follows: f(£,x) = (fd-ifd-2 ■ ■ -to), where 
for all 0 < m < d- 1: 7m = 1, if £m = 0 and {xd^xd^2 . ..im+i) # 0; and fm = 0, otherwise. 
(So. ->d_! = 0, by definition.) 

Lemma 11 7(/,i)= 7(£,i07(£,z)). 

Proof: Let y = 7(^,1) and 7' = j(£,x®y). Then, we prove that 7^ = ym for all 0 < m < d- 1. 
Let x' = x © y. 

• V£m = l.then ym = 7^ = 0. 

• lf/m = 0: 

- (xd-ixd-2...xm+1) = 0: Then, ym = 0 and {yd-iVd-2 ■ ■ -ym+i) = 0. So, (ii_1Xj_2 

• • -*m+i) = ° too> J-ev l'm = 0. Therefore, ym = 7^. 

- (xd-iXd-2 .. .im+i) ^ 0: Then, ym = 1. Let xT be the leading non-zero bit, m + 1 < 
r < d - 1. Then, yr = 0, and x^ = ir © j/r = 1, i.e., {x'd_xx'd_2 .. .i'm+1) ^ 0. So. 
"l'm = 1- Therefore, ym = 7^. I 

Lemma 12 ||i © f(£,x)\\ + \\x © £\\ <d+l where 2 < x < 2d, 0 < I < 2d. 

Proof: We prove this lemma by showing that 

d-\ 

Y, UX™ ® Tm) + (*m © *m)) < «* + 1. 
m=0 



1 

Let xr be the leading 1-bit of x (r = -1, if x = 0). Consider any m such that xm © im = l 

t m < r: If xm = 0 then im = 1, 7m = 0.  If xm = 1 then £m = 0, 7m = 1.  Both have 
(Xm©7m) + (*m 0 tm) = 1- 

• m = r:  xm = xr = 1, so £m = 0 and -ym = 0 (since xd_1x(i_2.. .xm+1 = 0).  We have 
(*m©7m) + (Xm 6 An) = 2. 

• m > r:   xm = 0 since xP is the leading 1-bit.   Then, lm = 1, and 7m = 0.   We have 
(im 0 7m) + (xm @£m) =  1. 

In summary, for any m such that xm®tm = 1, we have {xm@tm)+(xmeim) = 1 except for m = r 
for which it sums up to 2. For any m such that xm©^m = 0, we have (xm97m) + (xm@^m) < 1. 
Therefore, 

d-l 

Xl((Im©7m) + (lm©^m))<rf+l. I 
m=0 
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